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Abstract 

We investigate whether a nontrivial field theory exdsts for wt~dch all scalars formed from 
/'J~ (where g~s is used to raise and lower indices) can be zero for alt points of space and time. 
We find some examples for which the invariants are all zero for all points at which the 
field is finite. We also comment upon the problem of boundary conditions, in general. 

I. Introduction 

In our previous studies (Muraskin, 1970; 1971a and b; Muraskin & 
Clark, 1970; Muraskin & Ring, 1971, 1972; Muraskin, I972) of/']~;~ = 0, 
g~;k = 0 we did not concern ourselves with the problem of  boundary 
conditions. This is a reasonable working hypothesis if: 

(a) Boundary conditions automatically take care of  themselves once we 
make a reasonable choice for our parameters at the initial point. We 
recall that the field is determined uniquely once the parameters at the 
initial point are specified. 

(b) Turnabout of field components around the point where the com- 
ponent is a maximum (minimum) is not very sensitive to behavior at 
infinity. 

In our last paper, we found indications that these favorable possibilities 
above are somewhat unlikely. That  is, the computer solutions show a 
tendency toward blow-up as we go further from the origin point. It  is still 
not impossible that this situation may reverse itself as we proceed still 
farther from the origin. However, at this point we have no reason to believe 
in this latter possibility. Thus, it may well be that the boundary condition 
problem cannot safely be ignored. 

A natural set of  boundary conditions is that all invariants involving/'~k 
should be zero at the origin point. We have already remarked that all 
invariants constructed f rom/~k,  g~J and 0k are constants as a consequence 
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of the field equations. This means that our boundary conditions imply that 
all invariants involving/ '~ are zero everywhere, including at infinity. 

Now, there are an infinite number of invariants involving/'jk. Thus, it is 
far from obvious that there exists an initial set of  data (/'j~,g~) such that all 
infinite invariants are zero. Furthermore, to make matters even more 
difficult, the initial data must satisfy ninety-six algebraic non-linear 
integrability conditions. Thus, it is not clear whether we can construct a 
theory in which these conditions can all be met. 

In this paper, we shall prove that a set of/ ' jk,  g~ do, in fact, exist at the 
origin point such that all invariants constructed from them (involving Fj~) 
are zero at all points (for which the field is finite). In addition, the integra- 
bility equations are satisfied. 

2. First Example 

We write, as in our previous papers, 

I'Jk = e~' et]j erk t"~r (2.1) 

gi~ = e~ e~ ~g~,~ (2.2) 

where g~/3 is the Minkowski metric. An invariant formed from I'~r,&, ~ will 
be unchanged by an ee, transformation. For example, 

.1 f k p  m n  go1-'~ml'Unpg g = g ~  F~o~1-'~agPa g~X (2.3) 

Thus, we can work with the simpler set / '~r ,  g=3, and then transform to get 
g~s, I'~s,. The invariants are unchanged by this procedure. 

Our choice of / '~e  is 

v l ,  = r h  = r ] ~  = r ? o  = a  

r h  = r ~  = v,~,  = VOo = b 
(2.4) 

r ~ ,  2 3 = VOo e =~ F 3 2  = "/"33 = 

v h  = r o ~  = v L  = Vo~ = d 

This set satisfies the integrability equations R}kt = 0 for any choice of 
a, b, c, d. We shall show that the set (2.4) implies that all invariants involving 
/'Jk are zero if the following relation is met 

a z + b 2 + e 2 - -  d 2 = 0 (2.5) 

We shall change our notation for the sake of simplicity. For example, 
we shall write 

g~,~ F~x F~aogXa gp ~ (2.6) 

a s  

This notation is used often when one works in a Minkowski space. This is 
the case, here, since g=~ is the Minkowski metric. We have to remember 
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that  when the summat ion involves the zero component ,  we get a relative 
sign appearing compared  to the case that  the indices are 1, 2, 3. 

F r o m  the form (2.4), we see the first index is always the same as the third. 
Thus (2.7) becomes 

(2.8) 
Now, _ r ' l l l = - a ,  1~22z=-b, _F333=-c,  P000=d .  Thus (2.8) gives 
- a  2 - b 2 - c 2 + d 2 which is to be zero (see (2.5)). We can check f rom (2.6) 
that  the signs are correct. 

In  a general p roduc t  o f  gammas,  we can see what  types o f  terms appear. 
We denote by ~ an index that appears in the middle position o f  one o f  the 
gammas.  A possible kind of  terms is 

I ~  I ' ,=, f (r ,  a . . . .  ) (a) 

f ( r ,  a, . . . )  involves products  o f  gammas involving r, a as well as other indices. 
We evaluate the summat ion over a keeping first a, -r, . . .  fixed. Now,  f rom 
(2.4) the value o f / ~ o ~ t  is the same independent o f  which a we choose. 
Thus, we get 

(_a  2 _ b 2 _ c 2 + dZ)f(rz, o'1,.. .) 

where rl  and ~1 denotes the particular choices o f  r and m This expression 
is zero for all r and all or. Thus, the combinat ion (a) appearing in a product  
o f  gammas is always zero. 

We point  out  that  combinat ions like 

cannot  appear in the product  o f  gammas.  That  is, if we have two ~'s appear- 
ing in the middle positions, then no other middle place can have the ~ index. 
This result can be traced back to the statement that  the equality between 
indices is for  the first index and the third. We shall have more  to say about  
this rule later on. 

We see that  the number  of  ~'s appearing must  always be even. 
Another  possible kind of  term is 

/ ~ - / ' ~ ' ~ ( ~ = o ~  ]-'~/~=/-'~w...)f(cr, r, p,/3, v, etc.) (b) 

The dots refer to additional terms of  the s t ruc ture / '~ ,~ .  Again,  we fix 
~, r, p,/3, v and do the summation over c, first. Since/'~p~, is the same indepen- 
dent o f  a, we get (for example, we take p = 1,/3 = 2, v = 2) 

( -abZ. . . )  ( - a  2 - b 2 - c 2 + d2)f (a ,  r, p = 1,/3 = 2, v = 2, etc.) 

This expression is again zero for all values o f  ~r, r, p, v,/3. (Note, f does not  
involve any denominators.)  

Another  kind o f  term is 
/ ' ~ = / ~ = ~ f  (c) 

We have already pointed out  that  this is zero. 

t No summation over cr here. In similar contexts, later on, no summation will be 
implied. Of course, in all invariants, summation is implied. 
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Another type is 

_N = I ' o ~ p f  (p . . . .  ) (d) 

This gives  f ( p ) ( - a  2 - b 2 - c 2 + d2), which is zero. 
Still another type is 

_r '~(F~p~ F ~ . . . ) / ' v ~ , f ( P ,  a, v . . . )  (e) 

Using the fact that/ '~0~ is independent of  ~, we get that the expression is 
again proportional t o  ( - a  2 - b 2 - C 2 + d E) and is, thus, zero. 

Finally, we have 

_P==~ l~=~(_P~p~ I ' ~  . . .) f (fl, p . . .) (f) 

This gives a factor - - a  2 - -  b 2 - c 2 + d 2 and again in zero. 
The expression _ P ~ P , ~ F o ~ o F v ~  ~ cannot occur. Here, a appears in 

the middle position more than twice. That  this term does not appear can be 
seen explicitly as follows: I f  we form 

we get/'=,,= appearing, since y is the same as fl (see (2.4)). We can also get 
/ ' ~  another way. That  is, f rom 

. . . = ro o . . . 

In the first of  these expressions after we have set a = ), in the first gamma and 
= fi in the second gamma, there is one free (unpaired) a, which can be 

placed in a middle position (the -Pp~o term). Thus, we end up with two 0ds in 
middle positions. In the second situation, after we have set ~ = fi in the 
first gamma, we have one free a index which can be placed in a middle 
position as is done above. Here, too, we end up with two a 's  in middle 
positions. There is no way to get more than two a 's  in middle positions. 

We can get chains of/'~,~,, as follows: 

We still have only two free indices ~ and ~. They could be matched up with 
an a and a appearing in middle positions. Thus, here too, we see that 
appears in middle positions but twice. 

We have constructed all expressions that involve a appearing in the 
middle positions twice. We cannot have a appearing in a middle position 
but once, and still have an even number of  a 's  appearing in the entire 
expression (since the first and third indices are the same and thus, for 
example, T'~.oT'. ~. = T'~.~ T'.~., which has an odd number of  c~'s). 

Thus, the only expressions possible involving e, have e appearing in two 
middle positions.I" We have written down all of  these and they are all zero 

~f Note, since some index must always occur in a middle position, and since we are free 
to call this index ~, the results we have are general. 
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since they are proportional to - a  z -  b 2 -  C2@ d 2. Thus, we conclude all 
invariants involving/"j~ are zero.t  

We point out that this example, although nontrivial, is rather degenerate. 
After we make the transformation (2.1), we find the following structure 
for Fjk, 

rl = 2 3 /"12 = F13 = F~ = a' 

= F22 - F23 (2.9) /"~1 2 _ 3 = / "0  o = b ,  

= 2 _  3 /"% c' /"~1 /"32 - -  /'133 = = 

/~011 = 2 __ 3 /~02 - / ' o 3  = Fo~ = d' 

with a', b', c', d '  different from a, b, c, d. All the remaining Fjk are zero. On 
use of  the field equations, we get the same structure maintained. Thus, 
a', b', c', d '  changes from point to point. Henceforth, for convenience, we 
drop the prime in (2.9). The field equations for a, b, c, d are 

Oa Ob Oc Od 
- -  = a 2 - -  = a b  - -  = a c  - -  = ad 
Ox Ox Ox Ox 

Oa Ob = b2 ac be __Od= bd 
- - =  - -  O v  = Oy ba Oy ~ Oy 

Oct Ob Oc Od 
- - =  c a  - -  = b c  - - :  e 2 - - =  cd 
Oz Oz Oz Oz 

Oa = da Ob = db Oc cd Od = d2 
Ox o Ox---o Ox o = Ox o 

(2.1o) 

The solution of  these equations is 

kl k2 ka ko (2.11) a = - - ~  b = - - ~  e = - ~  d = - - ~  

where 
D = xk i  +yk2  + zk3 + x~ + k5 (2.12) 

and 
k l  2 q- k2 2 q- k3 2 - / f o  2 = 0 (2.13) 

This system is not finite at all points since there are points for which D 
vanishes. 

The reason we have such degeneracy in this example is that F~y has the 
following structure 

/"r --  3~, ~ (2 .14)  

t If the arguments appear involved, the reader can check it out by writing down a 
product of very many gammas. Then, he can assign indices in a random manner such 
that all indices are paired up. Then, make use of the fact that the first index is the same as 
the third. Then, it will be clear that only the combinations listed above will appear. 
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with 

and 
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(2.15) 

a 2 + b 2 + c 2 - d 2 = 0 (2.16) 

Using (2.14), we can see right away that all invariants constructed f rom/ ' jk  
must be zero. We have introduced a rather long proof  of  this effect, since 
this lengthier discussion is useful in our future examples where/'~,, does not 
have degenerate structure (2.14). 

3. Second Example 

We can get a nondegenerate theory (all/ 'Jk nonzero) by working in a 
higher dimensional space. For  example, let us consider an 8 dimensional 
theory. We take 

with 

V l ,  V h =  ~ ' = /n13  = / ' 1 4  = a  

_r'~', / '~2 3 _  = = /~23  - -  / n 2 4  = b 

r3',  / ' ] 2 =  3 _  ~ =  = /133  - -  /~34  C 

/ ' 4 3 = / ' 4 4  d r h  = / ' h  = 3 4 = 

= Fs7 = / ' s s  / '~5 i ,6  6 =  7 8 = a ,  

/ ' 5 5  / , 6 6  if't7 __ / " 8  __/~ '  ~ - - 6 7 - - ' t  6 8 - - u  

/,575 / ,6  6 r 7  _ r 8  _ ;  ~ . t  7 7 - -  .t 7 8 - - t .  

/ ' 5 5  = / ' 6 6  = / , 7  7 = /,888 = d '  

(3.1) 

a z + b 2 + c 2 - d z = 0 

a 'z + b 'z + c '2 - d 'z = 0 (3.2) 

We can check that the forms (a), (b), (c), (d), (e), (f) are still zero. Thus, 
again all invariants formed from F~k, and using g~j as a metric, are zero. 
Also, we can check that the integrability equations are still satisfied. 
Using eight 8-dimensional e~i, it is a simple matter to obtain from (2.1) a 
set of/'~k that are all nonzero. The/-'~k vary from point to point using the 
field equations. It is not clear that the solutions are bounded, but at least 
we have eliminated the degeneracy problem. 

This example is also unrealistic in that it involves eight dimensions. 

4. Third Example 

We get another nondegenerate theory when F~v have the following non- 
zero values 

Vl3 =/ '3~ = a 
/'o~ =/'o33 = b (4.1) 
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with 
a 2 - b 2 = 0 (4.2) 

This set of  data has a two-dimensional substructure. (It is still a four- 
dimensional theory since e~i are four-dimensional). As this / " ~  has the 
same structure that appears in the proof in Section 2 and since the quantities 
(a), (b), (c), (d), (e), (f) are all zero, we get that all the invariants involving 
/"~,/ are zero. The invariants are preserved by e~i transformations. The 
difficulty with this set of data is that we have not been able to find a maximum 
for go0. For  all the varied sets of e~ we have tried, we have obtained 
(Muraskin, 1971b) detAab = 0 (within computer accuracy). We then went 
through the following steps hoping to avoid this difficulty. We preceded 
300 points down the x-axis. At this point, we subjected the resulting/"jk, g~j 

to a second e=z transformation. We then proceeded 300 points down the 
y-axis. Again we subjected the fields to a different e~i transformation. 
The procedure was repeated for the z and x ~ axis. This procedure brings 
in four sets o fe~  parameters and it gets us away from looking for a maximum 
directly with the simple system (4.1). The integrability conditions are still 
satisfied at the end of the procedure since the field equation and the e~t 
transformation preserve the integrability equations. All the invariants also 
remain zero in this process. However, after all this was done, we still found 
that the resulting detAab is zero. Thus, our computer results indicate that 
the data is not consistent with a maximum in g00. 

5. F o u r t h  E x a m p l e  

Another nondegenerate set of data results from E~,  having the following 
nonzero values 

_ 3 /"~  = a /"22 - / "23  = 
3 0 /"33 = /"30 = /"22 = b (5.1) 
0 3 Foo = / " 0 3  = / " 2 2  c 

with 
a z + b E - c 2 = 0 (5 .2)  

Again, all invariants involving F ~  are zero. The data has a basic three- 
dimensional substructure. We found no change from Section 4 so far as a 
maximum in goo is concerned. 

All the examples proposed are nontrivial. 

6. D i s c u s s i o n  

We have been studying for some time the field theory in which all tensors, 
all orders of  derivatives, all scalars are treated in a uniform manner. We 
may term this field theory an 'aesthetic' type field theory. In this paper, we 
have studied a simple set of boundary conditions. Actually, the boundary 
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conditions we would really prefer would be/'Jk --> 0 at spatial and temporal 
infinity. It is necessary for all invariants involving gamma to be zero at the 
origin for these boundary conditions to be satisfied. It is not clear though, 
that the vanishing of the invariants is sufficient to imply the desired boundary 
conditions.t In view of the fact that we have obtained several examples for 
the vanishing of invariants, it may not be too much to expect that there 
exists some set of data at the origin for which/'Jk ---> 0 at spatial and temporal 
infinity. 

We may take note at this point that the aesthetic field theory has already 
survived some impressive hurdles. 

(1) The integrability equations represent many more equations than 
unknowns. We have shown, nevertheless, that nontrivial solutions to these 
equations exist. 

(2) The integrability equations arise from the requirement that mixed 
derivatives of any tensor function be symmetric. Now, this could lead to a 
different condition for each kind of tensor. This would amount to an 
infinite number of integrability equations which would not be favorable 
for a nontrivial solution. On the contrary, we have found that one does not 
get an ever-increasing number of restrictions. 

(3) The covariant derivatives of all tensor functions vanishing would also 
lead to an infinite number of restrictions. Again, this is not the case. 

(4) The boundary conditions require that an infinite number of invariants 
involving/~k all be zero. We have, in fact, shown in this paper that there are 
at least several ways that this condition may be met. 

These are some encouraging signs that the boundary condition problem 
may be solvable. 

We may ask, does not the vanishing of the gammas at spatial and temporal 
infinity imply an infinite universe ? The answer to this is yes and no. The 
universe is certainly infinite in that the fields are nonvanishing throughout 
finite space and time. However, this does not preclude a bounded system 
involving particles. That is, if one goes far enough away from a particle, 
one may, after a finite displacement, arrive at a point for which there are no 
more particles no matter how much farther one goes. The fields could fall 
off rapidly outside the particle system. From an experimental point of view, 
we would say that the universe is finite. 

It is difficult to understand from a logical point of view how the universe 
could come out of nothing at some time zero. In our theory, such a situation 
would not occur as we may contemplate a 'particle universe' emerging from 
a vacuum characterized by nonvanishing fields. Thus, we do not get 
something out of  nothing. 

Although a geometric field theory can be mapped onto a fiat space 
locally, this is not the case globally. Thus, the boundary conditions would be 
different in the curved space theory as contrasted with our theory. The 
question would thus be, which theory is fundamentally more reasonable so 

t In equations (2.12) and (2.11) we do have FJ~ -~ 0 at spatial and temporal infinity. 
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far as boundary conditions are concerned? Presumably the attractive 
feature of the curved space theory is the possibility of  a closed universe. 
But, if the closure appears in the time coordinate, it would appear that there 
would be paths that can return us back to the present instant in time. This 
may be looked upon as a disturbing feature. If  the closure is in space only, 
and not in time, then the curved space theory which is supposedly intro- 
duced for the sake of bringing in boundary conditions would have nothing 
to offer us so far as understanding boundary conditions in time. Thus, we 
conclude that the aesthetic field theory has some definite advantages over 
the curved space theory, from a conceptual point of  view. 

In our work, the universe is infinite in extent from a mathematical point 
of view even though we anticipate a finite 'particle universe'. One may ask, 
should not the concept of infinity be avoided in a basic theory ? We point out, 
on the contrary, that the concept infinity already appears in various accept- 
able ways. For  example, we have convergent series that have an infinite 
number of  terms in them. There are an infinite number of points in any 
finite interval. Thus, the notion of infinity is not per s ea  liability. We note, 
in curved space theory, one has a mathematical singularity associated 
with the derivative of the field normal to  the curved surface within the 
framework of an imbedding space. We do not see how some kind of mathe- 
matical (as contrasted to empirical) singularity can be avoided in any case. 

7. Conclusion 

The requirement that all invariants involving gammas are zero everywhere 
(where the field is finite) amounts to an infinite number of restrictions. 
Despite this, we have found several examples of data at the origin such that 
these conditions are met. The vanishing of  all invariants is necessary if the 
natural boundary conditions/~)k -+ 0 at spatial and temporal infinity are 
to be satisfied. The examples we have found have not been shown to be free 
of  difficulties. The kinds of  difficulties we have encountered in our examples 
are: the inability to obtain a maximum (minimum) in g00; the presence of 
singularities; and the apparent unphysical nature of higher dimensions. 
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